Minimum Degrees of Minimal Ramsey Graphs

نویسندگان

  • ANDREY GRINSHPUN
  • RAJ RAINA
  • RIK SENGUPTA
چکیده

For graphs F and H, we say F is Ramsey for H if every 2-coloring of the edges of F contains a monochromatic copy of H. The graph F is Ramsey H-minimal if there is no proper subgraph F ′ of F so that F ′ is Ramsey for H. Burr, Erdős, and Lovász defined s(H) to be the minimum degree of F over all Ramsey H-minimal graphs F . Define Ht,d to be a graph on t+ 1 vertices consisting of a complete graph on t vertices and one additional vertex of degree d. We show that s(Ht,d) = d 2 for all values 1 < d ≤ t; it was previously known that s(Ht,1) = t− 1, so it is surprising that s(Ht,2) = 4 is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that s(H) ≥ 2δ(H)−1 for all graphs H, where δ(H) is the minimum degree of H; a graph H with s(H) = 2δ(H)−1 is called Ramsey simple. Szabó, Zumstein, and Zürcher were the first to ask which graphs are Ramsey simple, and conjectured that all bipartite graphs without isolated vertices are. Fox, Grinshpun, Liebenau, Person, and Szabó further conjectured that all triangle-free graphs without isolated vertices are Ramsey simple. We show that d-regular 3-connected triangle-free graphs, with one extra technical constraint, are Ramsey simple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

Minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs

A uniform hypergraph H is called k-Ramsey for a hypergraph F , if no matter how one colors the edges of H with k colors, there is always a monochromatic copy of F . We say that H is minimal k-Ramsey for F , if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovasz [S. A. Burr, P. Erdős, and L. Lovász, On graphs of Ramsey type, Ars Combinatoria 1 (1976), no. 1, 16...

متن کامل

Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

For graphs F and H, we say F is Ramsey for H if every 2-coloring of the edges of F contains a monochromatic copy of H. The graph F is Ramsey H-minimal if F is Ramsey for H and there is no proper subgraph F ′ of F so that F ′ is Ramsey for H. Burr, Erdős, and Lovász defined s(H) to be the minimum degree of F over all Ramsey H-minimal graphs F . Define Ht,d to be a graph on t + 1 vertices consist...

متن کامل

On the minimum degree of minimal Ramsey graphs

We investigate the minimization problem of the minimum degree of minimal Ramsey graphs, initiated by Burr, Erdős, and Lovász. We determine the corresponding graph parameter for numerous bipartite graphs, including bi-regular bipartite graphs and forests. We also make initial progress for graphs of larger chromatic number. Numerous interesting problems remain open.

متن کامل

Saturation numbers for families of Ramsey-minimal graphs

Given a family of graphs F , a graph G is F-saturated if no element of F is a subgraph of G, but for any edge e in G, some element of F is a subgraph of G + e. Let sat(n,F) denote the minimum number of edges in an F -saturated graph of order n. For graphs G,H1, . . . , Hk, we write that G → (H1, . . . , Hk) if every k-coloring of E(G) contains a monochromatic copy of Hi in color i for some i. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014